进程优先级
进程可以分为实时进程和非实时进程:
- 硬实时进程有严格的时间限制,任务在指定的时间内完成。硬实时进程的关键特征时,它们必须在可保证的时间内得到处理。请注意,这并不意味所要求的时间特别短,而是系统给了固定长度的时间。linux不支持硬实时处理,至少在主流的内核中不支持。但有一修改版本如RTlinux,Xenomai,RATI则可以。
- 软实时进程是硬实时进程的一种弱化。尽管仍然需要快速处理,但会稍晚一点。软实时的一个例子是对CD的写入,CD的写入进程的数据必须保持某一速率,但如果系统负荷太高,数据流可能会中断,这可能导致CD不能用。
- 大多数进程是没有特定时间约束的普通进程,但仍然可以根据重要性来分配来分配优先级。
进程的生命周期
进程可能有下面的几种状态:
- 运行:该进程此刻正在执行
- 等待:进程能够运行,但没有得到许可,因为CPU分配给另一个进程。调度器可以在下一次任务切换时选择该进程。
- 睡眠:进程正在睡眠无法进行,因为它在等待一个外部事件。调度器无法在下一次任务切换时选择该进程

1.对于一个排队的可运行进程,他已经准备好了,但没有运行,因为CPU分配给另一个进程。该进程的状态为“等待”。在调度器授予CPU时间之前,进程会一直保持该状态。在分配CPU时间后,其状态改变为“运行”(路径4) 2.在调度器决定回收资源时,过程状态从“运行”改变为“等待”(路径2),循环重新开始。实际上根据是否可以被信号中断,有两种睡眠状态。现在这种差别还不重要,但在更仔细地考察具体实现时,其差别就相对重要了。 3.如果进程必须等待时间,则其状态“运行”改变为“睡眠”(路径1).但进程状态无法直接从“睡眠”转到“运行”,所以要先转到“等待”(路径3),然后再回到循环中。
僵尸进程:这样的进程已经killed,不过仍然已某种方式活着。实际上,说这个进程死了,是因为其资源已经释放,因此他们无法也决不会再次运行。说他们活着是因为进程中仍然有对应的表项。
产生的原因:其原因在于UNIX操作系统下进程创建和销毁方式。在这两种事件发生时,程序将终止运行。第一,程序必须由另一个进程或一个用户杀死;进程的父进程终止时必须调用或已经调用wait4系统调用。这相当于向内核证实父进程已经确认子进程已经终结。只有在第一个条件发生(程序终止)而第二个条件不成立的情况下(wait4),才会出现“僵尸”状态。在进程终止后,其数据尚未从进程表删除前,进程是暂时处于“僵尸”状态。从ps或top的输出可以看到僵尸进程。因为残留在内核中占的空间很少,所以这几乎不成问题。
进程的表示
linux内核涉及进程和程序的所有算法都围绕task_struct(inlude/sched.h)。task_struct包含很多成员,将进程与各个内核子系统联系起来。
struct task_struct {
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
void *stack;
atomic_t usage;
unsigned int flags; /* per process flags, defined below */
unsigned int ptrace;
#ifdef CONFIG_SMP
struct llist_node wake_entry;
int on_cpu;
#endif
int on_rq;
int prio, static_prio, normal_prio;
unsigned int rt_priority;
const struct sched_class *sched_class;
struct sched_entity se;
struct sched_rt_entity rt;
#ifdef CONFIG_CGROUP_SCHED
struct task_group *sched_task_group;
#endif
#ifdef CONFIG_PREEMPT_NOTIFIERS
/* list of struct preempt_notifier: */
struct hlist_head preempt_notifiers;
#endif
/*
* fpu_counter contains the number of consecutive context switches
* that the FPU is used. If this is over a threshold, the lazy fpu
* saving becomes unlazy to save the trap. This is an unsigned char
* so that after 256 times the counter wraps and the behavior turns
* lazy again; this to deal with bursty apps that only use FPU for
* a short time
*/
unsigned char fpu_counter;
#ifdef CONFIG_BLK_DEV_IO_TRACE
unsigned int btrace_seq;
#endif
unsigned int policy;
int nr_cpus_allowed;
cpumask_t cpus_allowed;
#ifdef CONFIG_PREEMPT_RCU
int rcu_read_lock_nesting;
char rcu_read_unlock_special;
struct list_head rcu_node_entry;
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_TREE_PREEMPT_RCU
struct rcu_node *rcu_blocked_node;
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
#ifdef CONFIG_RCU_BOOST
struct rt_mutex *rcu_boost_mutex;
#endif /* #ifdef CONFIG_RCU_BOOST */
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
struct sched_info sched_info;
#endif
struct list_head tasks;
#ifdef CONFIG_SMP
struct plist_node pushable_tasks;
#endif
struct mm_struct *mm, *active_mm;
#ifdef CONFIG_COMPAT_BRK
unsigned brk_randomized:1;
#endif
#if defined(SPLIT_RSS_COUNTING)
struct task_rss_stat rss_stat;
#endif
/* task state */
int exit_state;
int exit_code, exit_signal;
int pdeath_signal; /* The signal sent when the parent dies */
unsigned int jobctl; /* JOBCTL_*, siglock protected */
/* ??? */
unsigned int personality;
unsigned did_exec:1;
unsigned in_execve:1; /* Tell the LSMs that the process is doing an
* execve */
unsigned in_iowait:1;
/* task may not gain privileges */
unsigned no_new_privs:1;
/* Revert to default priority/policy when forking */
unsigned sched_reset_on_fork:1;
unsigned sched_contributes_to_load:1;
pid_t pid;
pid_t tgid;
#ifdef CONFIG_CC_STACKPROTECTOR
/* Canary value for the -fstack-protector gcc feature */
unsigned long stack_canary;
#endif
/*
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->real_parent->pid)
*/
struct task_struct __rcu *real_parent; /* real parent process */
struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
/*
* children/sibling forms the list of my natural children
*/
struct list_head children; /* list of my children */
struct list_head sibling; /* linkage in my parent's children list */
struct task_struct *group_leader; /* threadgroup leader */
/*
* ptraced is the list of tasks this task is using ptrace on.
* This includes both natural children and PTRACE_ATTACH targets.
* p->ptrace_entry is p's link on the p->parent->ptraced list.
*/
struct list_head ptraced;
struct list_head ptrace_entry;
/* PID/PID hash table linkage. */
struct pid_link pids[PIDTYPE_MAX];
struct list_head thread_group;
struct completion *vfork_done; /* for vfork() */
int __user *set_child_tid; /* CLONE_CHILD_SETTID */
int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
cputime_t utime, stime, utimescaled, stimescaled;
cputime_t gtime;
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
struct cputime prev_cputime;
#endif
unsigned long nvcsw, nivcsw; /* context switch counts */
struct timespec start_time; /* monotonic time */
struct timespec real_start_time; /* boot based time */
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
unsigned long min_flt, maj_flt;
struct task_cputime cputime_expires;
struct list_head cpu_timers[3];
/* process credentials */
const struct cred __rcu *real_cred; /* objective and real subjective task
* credentials (COW) */
const struct cred __rcu *cred; /* effective (overridable) subjective task
* credentials (COW) */
char comm[TASK_COMM_LEN]; /* executable name excluding path
- access with [gs]et_task_comm (which lock
it with task_lock())
- initialized normally by setup_new_exec */
/* file system info */
int link_count, total_link_count;
#ifdef CONFIG_SYSVIPC
/* ipc stuff */
struct sysv_sem sysvsem;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
/* hung task detection */
unsigned long last_switch_count;
#endif
/* CPU-specific state of this task */
struct thread_struct thread;
/* filesystem information */
struct fs_struct *fs;
/* open file information */
struct files_struct *files;
/* namespaces */
struct nsproxy *nsproxy;
/* signal handlers */
struct signal_struct *signal;
struct sighand_struct *sighand;
sigset_t blocked, real_blocked;
sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
struct sigpending pending;
unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask;
struct callback_head *task_works;
struct audit_context *audit_context;
#ifdef CONFIG_AUDITSYSCALL
kuid_t loginuid;
unsigned int sessionid;
#endif
struct seccomp seccomp;
/* Thread group tracking */
u32 parent_exec_id;
u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
* mempolicy */
spinlock_t alloc_lock;
/* Protection of the PI data structures: */
raw_spinlock_t pi_lock;
#ifdef CONFIG_RT_MUTEXES
/* PI waiters blocked on a rt_mutex held by this task */
struct plist_head pi_waiters;
/* Deadlock detection and priority inheritance handling */
struct rt_mutex_waiter *pi_blocked_on;
#endif
#ifdef CONFIG_DEBUG_MUTEXES
/* mutex deadlock detection */
struct mutex_waiter *blocked_on;
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
unsigned int irq_events;
unsigned long hardirq_enable_ip;
unsigned long hardirq_disable_ip;
unsigned int hardirq_enable_event;
unsigned int hardirq_disable_event;
int hardirqs_enabled;
int hardirq_context;
unsigned long softirq_disable_ip;
unsigned long softirq_enable_ip;
unsigned int softirq_disable_event;
unsigned int softirq_enable_event;
int softirqs_enabled;
int softirq_context;
#endif
#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 48UL
u64 curr_chain_key;
int lockdep_depth;
unsigned int lockdep_recursion;
struct held_lock held_locks[MAX_LOCK_DEPTH];
gfp_t lockdep_reclaim_gfp;
#endif
/* journalling filesystem info */
void *journal_info;
/* stacked block device info */
struct bio_list *bio_list;
#ifdef CONFIG_BLOCK
/* stack plugging */
struct blk_plug *plug;
#endif
/* VM state */
struct reclaim_state *reclaim_state;
struct backing_dev_info *backing_dev_info;
struct io_context *io_context;
unsigned long ptrace_message;
siginfo_t *last_siginfo; /* For ptrace use. */
struct task_io_accounting ioac;
#if defined(CONFIG_TASK_XACCT)
u64 acct_rss_mem1; /* accumulated rss usage */
u64 acct_vm_mem1; /* accumulated virtual memory usage */
cputime_t acct_timexpd; /* stime + utime since last update */
#endif
#ifdef CONFIG_CPUSETS
nodemask_t mems_allowed; /* Protected by alloc_lock */
seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
int cpuset_mem_spread_rotor;
int cpuset_slab_spread_rotor;
#endif
#ifdef CONFIG_CGROUPS
/* Control Group info protected by css_set_lock */
struct css_set __rcu *cgroups;
/* cg_list protected by css_set_lock and tsk->alloc_lock */
struct list_head cg_list;
#endif
#ifdef CONFIG_FUTEX
struct robust_list_head __user *robust_list;
#ifdef CONFIG_COMPAT
struct compat_robust_list_head __user *compat_robust_list;
#endif
struct list_head pi_state_list;
struct futex_pi_state *pi_state_cache;
#endif
#ifdef CONFIG_PERF_EVENTS
struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
struct mutex perf_event_mutex;
struct list_head perf_event_list;
#endif
#ifdef CONFIG_NUMA
struct mempolicy *mempolicy; /* Protected by alloc_lock */
short il_next;
short pref_node_fork;
#endif
#ifdef CONFIG_NUMA_BALANCING
int numa_scan_seq;
int numa_migrate_seq;
unsigned int numa_scan_period;
u64 node_stamp; /* migration stamp */
struct callback_head numa_work;
#endif /* CONFIG_NUMA_BALANCING */
struct rcu_head rcu;
/*
* cache last used pipe for splice
*/
struct pipe_inode_info *splice_pipe;
struct page_frag task_frag;
#ifdef CONFIG_TASK_DELAY_ACCT
struct task_delay_info *delays;
#endif
#ifdef CONFIG_FAULT_INJECTION
int make_it_fail;
#endif
/*
* when (nr_dirtied >= nr_dirtied_pause), it's time to call
* balance_dirty_pages() for some dirty throttling pause
*/
int nr_dirtied;
int nr_dirtied_pause;
unsigned long dirty_paused_when; /* start of a write-and-pause period */
#ifdef CONFIG_LATENCYTOP
int latency_record_count;
struct latency_record latency_record[LT_SAVECOUNT];
#endif
/*
* time slack values; these are used to round up poll() and
* select() etc timeout values. These are in nanoseconds.
*/
unsigned long timer_slack_ns;
unsigned long default_timer_slack_ns;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
/* Index of current stored address in ret_stack */
int curr_ret_stack;
/* Stack of return addresses for return function tracing */
struct ftrace_ret_stack *ret_stack;
/* time stamp for last schedule */
unsigned long long ftrace_timestamp;
/*
* Number of functions that haven't been traced
* because of depth overrun.
*/
atomic_t trace_overrun;
/* Pause for the tracing */
atomic_t tracing_graph_pause;
#endif
#ifdef CONFIG_TRACING
/* state flags for use by tracers */
unsigned long trace;
/* bitmask and counter of trace recursion */
unsigned long trace_recursion;
#endif /* CONFIG_TRACING */
#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
struct memcg_batch_info {
int do_batch; /* incremented when batch uncharge started */
struct mem_cgroup *memcg; /* target memcg of uncharge */
unsigned long nr_pages; /* uncharged usage */
unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
} memcg_batch;
unsigned int memcg_kmem_skip_account;
#endif
#ifdef CONFIG_HAVE_HW_BREAKPOINT
atomic_t ptrace_bp_refcnt;
#endif
#ifdef CONFIG_UPROBES
struct uprobe_task *utask;
#endif
};
要弄清楚该结构体的信息数量很困难。但该结构体可以分为下面各个部分:
- 状态和执行信息,如待解决信号,使用的二进制格式,进程ID号(pid),到父进程及其他有关进程的指针,优先级和程序执行有关的时间信息(CPU时间)
- 有关已经分配的虚拟内存的信息
- 进程身份凭证,如用户ID,组ID以及其权限
- 使用的文件包含程序代码的二进制文件,以及进程所处理的所有文件系统信息,这些都必须保存下来
- 线程信息记录该进程特定于CPU的运行时间数据
- 在与其他应用程序协作时所需的进程间通信有关的信息
- 该进程所用的信号处理程序,用于响应到来的信号
task_struct中重要的成员
1.进程状态(volatile long state)
state指定了进程的当前状态,可使用下列的值,定义于
/* * Task state bitmask. NOTE! These bits are also * encoded in fs/proc/array.c: get_task_state(). * * We have two separate sets of flags: task->state * is about runnability, while task->exit_state are * about the task exiting. Confusing, but this way * modifying one set can't modify the other one by * mistake. */ #define TASK_RUNNING 0 #define TASK_INTERRUPTIBLE 1 #define TASK_UNINTERRUPTIBLE 2 #define __TASK_STOPPED 4 #define __TASK_TRACED 8 /* in tsk->exit_state */ #define EXIT_ZOMBIE 16 #define EXIT_DEAD 32 /* in tsk->state again */ #define TASK_DEAD 64 #define TASK_WAKEKILL 128 #define TASK_WAKING 256 #define TASK_STATE_MAX 512 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" extern char ___assert_task_state[1 - 2*!!( sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; /* Convenience macros for the sake of set_task_state */ #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) /* Convenience macros for the sake of wake_up */ #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) /* get_task_state() */ #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ __TASK_TRACED)
- TASK_RUNNING:意味着进程处于可运行状态。这并不意味着已经实际分配CPU。进程可能会一直等待到调度器选中它。该状态确保进程可以立即运行,而无需等待外部事件。
- TASK_INTERRUPTIBLE:是针对等待某事件或其他资源的睡眠进程设置的。在内核发送信号给该进程表明事件已经发生时,进程状态改为TASK_RUNNING,它只要调度器选中该进程即可恢复执行。
- TASK_UNINTERRUPTIBLE:用于因内核指示而停用的睡眠进程。它们不能由外部信号唤醒,只能由内核亲自唤醒。
- TASK_STOPPED:进程停止运行。
- TASK_TRACED:本来不是进程状态,用于从停止的进程中,将当前被调用的那些(ptrace机制)与常规的进程区分。
下面的宏可以用于tack_struct或exit_state. + EXIT_ZOMBIE:僵尸进程。qil
- EXIT_DEAD:状态则指wait系统调用已经发出,而进程完全从系统删除之前的状态。只有多个线程对同一个进程发出wait调用时,该状态才由意义。
2.命名空间
(1)概述
在计算机的世界中,“程序”是一个名词,是一堆代码的集合,如果它只是静静的躺在磁盘上,即使代码堆积如山也毫无意义,运行起来的程序才能如愿以偿,由此也给它起一个新的名字-进程。不管进程呆在内存,还是正在CPU上运行,标识它唯一身份的就是进程身份号PID(Process IDentifier)。
命名空间提供了虚拟化的一种轻量级形式,使得我们可以从不同的方面来查看运行系统的全局属性。该机制类似于solaris中zone或FreeBSD中的jail。在虚拟化的系统中,一台物理计算机可以运行多个内核,可能是并行的多个的不同操作系统。而命名空间则只使用一个内核在一台物理计算机上运行,前述的所有全局资源都通过命名空间抽象起来。这使得可以将一组进程放置到容器中,各个容器彼此隔离。隔离可以使容器的成员与其他容器完全没有关系。但也可以通过允许容器进行一定的共享,来降低容器之间的分隔。目前Linux系统实现的命名空间子系统主要有UTS、IPC、MNT、PID以及NET网络子模块。
(2)实现
命名空间的实现需要两个部分:每个子系统的命名空间结构,将此前所有的全局组件包装到命名空间中;将给定进程关联到所属各个命名空间的机制。子系统此前的全局属性现在封装在命名空间中,每个进程关联到一个选定的命名空间。每个可以感知命名空间的内核系统都必须提供一个数据结构,将所有通过命名空间形式提供的对象集中起来。这个结构体就是struct nsproxy.
nsproxy.h
<pre class="prettyprint" id="c">
struct mnt_namespace; struct uts_namespace; struct ipc_namespace; struct pid_namespace; struct fs_struct;
/* * A structure to contain pointers to all per-process * namespaces - fs (mount), uts, network, sysvipc, etc. * * ‘count’ is the number of tasks holding a reference. * The count for each namespace, then, will be the number * of nsproxies pointing to it, not the number of tasks. * * The nsproxy is shared by tasks which share all namespaces. * As soon as a single namespace is cloned or unshared, the * nsproxy is copied. */ struct nsproxy { atomic_t count; struct uts_namespace *uts_ns; struct ipc_namespace *ipc_ns; struct mnt_namespace *mnt_ns; struct pid_namespace *pid_ns; struct net *net_ns; };
</pre>

这里只介绍两种namespace:UTS namespace和PID namespace,是因为这两种namespace比较有代表性。UTS namespace很简单,也没有树形或者很复杂的结构。
UTS命名空间
UTS命名空间几乎不需要特别的处理,因为它只需要简单量,没有层次组织。所有相关信息都汇集到下列结构的一个实例中
struct uts_namespace结构如下:
struct uts_namespace {
struct kref kref;
struct new_utsname name;
struct user_namespace *user_ns;
unsigned int proc_inum;
}; kref是一个嵌入的引用计数器,可用于跟踪内核中有多少地方使用了struct uts_namespace的实例(回想第1章,其中讲述了更多有关处理引用计数的一般框架信息)。uts_namespace所提供的属性信息本身包含在struct new_utsname中
<utsname.h>
struct new_utsname {
char sysname[65];
char nodename[65];
char release[65];
char version[65];
char machine[65];
char domainname[65];
};
各个字符串分别存储了系统的名称(Linux…)、内核发布版本、机器名,等等。使用uname工具可以取得这些属性的当前值,也可以在/proc/sys/kernel/中看到.
初始设置保存在init_uts_ns中:
init/version.c
struct uts_namespace init_uts_ns = {
...
.name = {
.sysname = UTS_SYSNAME,
.nodename = UTS_NODENAME,
.release = UTS_RELEASE,
.version = UTS_VERSION,
.machine = UTS_MACHINE,
.domainname = UTS_DOMAINNAME,
},
};
内核如何创建一个新的UTS命名空间呢?这属于copy_utsname函数的职责。在某个进程调用fork并通过CLONE_NEWUTS标志指定创建新的UTS命名空间时,则调用该函数。在这种情况下,会生成先前的uts_namespace实例的一份副本,当前进程的nsproxy实例内部的指针会指向新的副本。如此而已!由于在读取或设置UTS属性值时,内核会保证总是操作特定于当前进程的uts_namespace实例,在当前进程修改UTS属性不会反映到父进程,而父进程的修改也不会传播到子进程.